Vivekananda College of Engineering & Technology

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®-574 203] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.8

<ME>

<04-08-21>

INTERNAL ASSESSMENT TEST - 3

Dept: ME	Sem / Div: 6 th	Sub:Heat Transfer	S Code: 18ME63
Dt:05/08/2021	Time:9.30 -11 am	Max Marks: 50	Elective: N
	1 .•		

Note: Answer any 2 full questions.

QN		Questions	Mark	RBT	CO's
		Part A			
1	а	Derive the expression for effectiveness of a Parallel flow heat	10	L3	CO5
		exchanger.			
	b	A counter flow H.E through which passes 12.5 kg/sec of air to be	12	L3	CO5
		cooled from 540°C to 146°C , contains 4200 tubes each having a			
		diameter of 30mm. The inlet and outlet temperature of cooling			
		water is 25°C and 75°C respectively. If the water side resistance to			
		the flow is negligible, calculate the length required for this process.			
		Properties of air at the Average temperature are as follows			
		$\rho = 1.009 \text{kg/m}^3$, Cp= 1.0082 KJ/kgk, $\mu = 2.075 \times 10^{-5} \text{ N-S/m}^2$,			
		K=3.003*10 ⁻² w/m°C			
	с	Mention the types of heat exchanger	3	L2	CO5
		OR			
2	а	Derive the expression for Relationship between Nusselt number,	10	L3	CO3
		Grashoff's Number and Prandtl number for free convection heat			
		transfer by using Buckingham's Pai Theorem			
	b	A vertical door of the hot oven is 0.5m and is maintained at 200°C.	8	L3	CO3
		It is exposed to air at 20°C. Find			
		i) Local heat transfer coefficient half way of the door.			
		ii) Avg heat transfer coefficient.			
		iii) Thickness of free convection boundary layer at the			
		top of door.			
	с	A hot fluid at 300°C flows through a horizontal pipe of 30cm	7	L3	CO3
		outside diameter and 90cm long. The pipe is exposed to			
		Atmospheric air maintained at 20°C. Determine rate of natural			

		convection heat transfer			
		Part B			
3	a 1.	Explain the Drop wise and film wise condensation	8	L2	CO5
	D	Tube Heat exchanger consist of 200 tubes each 20mm Outer		L3	COS
		diameter and 5m length. Hot fluid flows inside the tube and cold air			
		over it in opposite direction to the hot fluid. Overall heat transfer			
		coefficient based on Outer diameter is 320 W/m ² k. Determine			
		outlet temp of both the fluids and total heat transfer by using the			
		following data.			
		$T_{hi}\!\!=\!\!120^{o}C$, $T_{ci}\!\!=\!\!20^{o}C$, $M_{h}\!\!=\!\!20$ kg/sec , $M_{c}\!\!=\!\!5$ kg/sec			
		$Cp_h\!\!=\!\!2000~J/kg~k$, $Cp_c\!\!=\!\!4000~J/kg~k$			
	c	A vertical cooling fin approximately a flat plate of 40 cm in height	9	L3	CO5
		is exposed to steam at atmospheric pressure. if the surface of the fin			
		is heated at 80 °C, Calculate I) Film thickness at the bottom edge of			
		the film. II)Over all heat transfer coefficient			
		III) Heat transfer rate and condensate mass flow rate.			
		Assume unit width of the fin .			
		OR			
4	а	Calculate the surface area required for a heat exchanger, it is	12	L3	CO5
		required to cool 3200 kg/hr of benzene (Cp=1.74 KJ/kg K) from			
		72°C to 42°C. Cooling water Cp=4.18 KJ/kg K at 15°C as flow rate			
		of 2200 kg/hr.			
		I. Single pass counter flow Heat exchanger.			
		II. 1shell -4 pass tube Heat exchanger.			
		III. Cross flow single pass with both water and benzene			
		unmixed			
		Take U as 0.28 KW/m ²⁰ C for all the cases			
	b	An electrically heated plate 25cm*25cm in which surface is	9	L3	CO3
		thermally insulated and other surfaces is dissipating heat by free			
		convection into Atmospheric air at 30°C. Heat flux over the surface			

	is uniform and results in mean temperature of 50°C. The plate is			
	inclined at 60° from the vertical. Determine heat loss if,			
	i. Heat surface facing upward.ii. Heated surface facing downward.			
c	Define Forced convection and Free convection	4	L2	CO3

Prepared by : Sunil B. Lakkundi